
Dear User-Defined Functions,
Inlining isn’t working out so great for us.

Let’s try batching to make our relationship work.
Sincerely, SQL

Kai Franz, Sam Arch, Denis Hirn,
Torsten Grust, Todd Mowry, Andy Pavlo

1

2

2

2

Summary

3

Summary
UDF Inlining is #1 for perf

3

Summary
UDF Inlining is #1 for perf

We found major problems with it

3

Summary
UDF Inlining is #1 for perf

We found major problems with it
UDF Batching is another technique

3

Summary
UDF Inlining is #1 for perf

We found major problems with it
UDF Batching is another technique

We compared them on 4 DBMSs

3

Summary
UDF Inlining is #1 for perf

We found major problems with it
UDF Batching is another technique

We compared them on 4 DBMSs
A hybrid strategy gives the best perf

3

UDFs

4

PL/SQL UDFs

4

 Code re-use
Intuitive

 Billions of daily
 queries

PL/SQL UDFs

4

UDFs are optimization barriers

SQL UDF

5

UDFs are slow!

4

Bad query plans!

Painfully slow!

UDFs are slow!

4

UDF Inlining

SQL UDF

6

UDF Inlining

IIT Bombay (2014)
7

FROID: UDF Inlining

Gray Systems Lab (2017)
8

~1000x speedup

FROID: UDF Inlining

9

UDF to SQL

10

x = y (SELECT y AS x) T1

UDF to SQL

10

x = y (SELECT y AS x) T1

x = (SELECT ...) (SELECT (SELECT ...)
AS x) T2

UDF to SQL

10

x = y (SELECT y AS x) T1

x = (SELECT ...) (SELECT (SELECT ...)
AS x) T2

IF ... THEN ...
 ELSE ...

(CASE WHEN ...
 ELSE ...) T3

UDF to SQL

10

x = y (SELECT y AS x) T1

x = (SELECT ...) (SELECT (SELECT ...)
AS x) T2

IF ... THEN ...
 ELSE ...

(CASE WHEN ...
 ELSE ...) T3

LATERAL

LATERAL

UDF to SQL

10

FROID (2017)

11

SELECT (SELECT NULL AS @total) T1

SELECT (SELECT SUM(...) AS @total) T2

SELECT (SELECT
(CASE WHEN T2.@total > 1000000 THEN 'Platinum'
 WHEN T2.@total > 500000 THEN ‘Gold’
 ELSE ‘Regular’
END) AS @level) T3

12

LATERAL

SELECT (SELECT NULL AS @total) T1

SELECT (SELECT SUM(...) AS @total) T2

SELECT (SELECT
(CASE WHEN T2.@total > 1000000 THEN 'Platinum'
 WHEN T2.@total > 500000 THEN ‘Gold’
 ELSE ‘Regular’
END) AS @level) T3

LATERAL

12

SELECT c_name,
service_level(c_custkey)

FROM customer;

13

SELECT c_name,

(SELECT T3.@total FROM SELECT (SELECT NULL AS @total) T1,
LATERAL SELECT (SELECT SUM(...) AS @total) T2, LATERAL SELECT
(SELECT (CASE WHEN T2.@total > 1000000 THEN 'Platinum' WHEN
T2.@total > 500000 THEN ‘Gold’ ELSE ‘Regular’ END) AS @level) T3)

SELECT c_name,

 FROM customer;

Subquery
service_level(c_custkey)

FROM customer;

13

~1000x speedup

FROID (2017)

14

SQL ProcBench (2021)

15

SQL ProcBench (2021)

24 queries with UDFs
Realistic

15

ProcBench on SQL Server
with FROID

16

vs.

SQL Server
SLOW

Fast

17

SELECT c_name,

(SELECT T3.@total FROM SELECT (SELECT NULL AS @total) T1,
LATERAL SELECT (SELECT SUM(...) AS @total) T2, LATERAL SELECT
(SELECT (CASE WHEN T2.@total > 1000000 THEN 'Platinum' WHEN
T2.@total > 500000 THEN ‘Gold’ ELSE ‘Regular’ END) AS @level) T3)

SELECT c_name,

 FROM customer;

Subquery
service_level(c_custkey)

FROM customer;

18

Subquery Execution

(1) Evaluate subquery per row

19

Subquery Execution

(1) Evaluate subquery per row

SELECT (SELECT c_name
 FROM customer
 WHERE c_id = o_id)
 FROM orders;

19

Subquery Execution

(1) Evaluate subquery per row

SELECT (SELECT c_name
 FROM customer
 WHERE c_id = o_id)
 FROM orders;

19

Subquery Execution

(1) Evaluate subquery per row

(2) Replace subquery with join

19

SELECT (SELECT c_name
 FROM customer
 WHERE c_id = o_id)
 FROM orders;

Subquery Execution

(1) Evaluate subquery per row

(2) Replace subquery with join

SELECT (SELECT c_name
 FROM customer
 WHERE c_id = o_id)
 FROM orders;

SELECT c_name
 FROM customer
 JOIN orders
ON c_id = o_id;

→
19

SQL Server Subqueries (2001)

20

SQL Server Subqueries (2001)

20

S

L

CB

A

21

S = Subquery
L = LATERAL

The Problem With LATERAL Joins

S

L

CB

A J
BA

L

J
CA

21

S = Subquery
L = LATERAL

J = Join

The Problem With LATERAL Joins

S

L

CB

A J
BA

L

J
CA

21

The Problem With LATERAL Joins

S = Subquery
L = LATERAL

J = Join

LATERAL

SELECT (SELECT NULL AS @total) T1

SELECT (SELECT SUM(...) AS @total) T2

SELECT (SELECT
(CASE WHEN T2.@total > 1000000 THEN 'Platinum'
 WHEN T2.@total > 500000 THEN ‘Gold’
 ELSE ‘Regular’
END) AS @level) T3

LATERAL

22

LATERAL

SELECT (SELECT NULL AS @total) T1

SELECT (SELECT SUM(...) AS @total) T2

SELECT (SELECT
(CASE WHEN T2.@total > 1000000 THEN 'Platinum'
 WHEN T2.@total > 500000 THEN ‘Gold’
 ELSE ‘Regular’
END) AS @level) T3

LATERAL

22

How do we replace
all subqueries with joins?

23

Unnesting Arbitrary Queries (2015)

24

Unnesting Arbitrary Queries (2015)

Replace all
 subqueries
 with joins!

24

Which system?

(1) DBMS must support
“Neumann-Style” unnesting

25

Which system?

(1) DBMS must support
“Neumann-Style” unnesting

25

Which system?

(1) DBMS must support
“Neumann-Style” unnesting

(2) DBMS must be open-source
25

Which system?

(1) DBMS must support
“Neumann-Style” unnesting

(2) DBMS must be open-source
25

DuckDB

26

DuckDB

github.com/duckdb/duckdb/pull/7528

27

https://github.com/duckdb/duckdb/pull/7528

DuckDB

github.com/duckdb/duckdb/pull/7528

27

https://github.com/duckdb/duckdb/pull/7528

But what about
 other DBMSs?

28

But what about
 other DBMSs?

Inlining = LATERAL joins = Slow

28

But what about
 other DBMSs?

Inlining = LATERAL joins = Slow

Can we avoid LATERAL joins?

28

Batching

SQL UDF

29

Batching

CREATE TEMPORARY TABLE temp (x, y);

INSERT INTO temp
SELECT (NULL, NULL)
 FROM input;

30

Batching

x = y
UPDATE temp

SET x = y

x = (SELECT ...)

IF cond THEN x = a
UPDATE temp

SET x = a
WHERE cond

UPDATE temp
SET x = (SELECT ...)

31

UDF Batching

SELECT c_name, @level
 FROM temp;

UPDATE temp
SET @level =
(CASE WHEN @total > 1000000
 THEN 'Platinum'
 WHEN @total > 500000
 THEN ‘Gold’
 ELSE ‘Regular’ END)

UPDATE temp
SET @total =
(SELECT SUM(...));

UPDATE temp
SET @total = NULL;

INSERT INTO temp
SELECT (c_name, c_custkey,
NULL, NULL)
 FROM customer;

CREATE TEMPORARY TABLE
temp (c_name, c_custkey,
@total, @level);

32

Batching vs Inlining

No copying overhead
One complex query

Copying overhead
Many small queries Batching

Inlining

33

Who created batching?

CMU Thesis (2023)

34

Who created batching?

Tubingen Thesis (2022)

34

Who created batching?

34

Who created batching?

IIT Bombay (2008)
34

Which is better?
Inlining or batching?

35

Experimental Setup
First batching vs inlining comparison!

UDFs from ProcBench, 1GB Scale

SQL Server, DuckDB, PostgreSQL, Oracle

We report relative speedup
36

Experimental Results

37

Experimental Results

37

Experimental Results

37

Experimental Results

37

Experimental Results

37

Experimental Results

37

Experimental Results

37

Heuristic

38

Experimental Results

39

Wrap Up

(1) UDF Inlining is not a silver bullet

40

Wrap Up

(1) UDF Inlining is not a silver bullet

(2) Subquery unnesting is crucial

40

Wrap Up

(1) UDF Inlining is not a silver bullet

(2) Subquery unnesting is crucial

(3) Batching works well

40

Wrap Up

(1) UDF Inlining is not a silver bullet

(2) Subquery unnesting is crucial

(3) Batching works well

(4) Hybrid is best

40

Future of UDFs

(1) LATERAL-free inlining?

41

Future of UDFs

(1) LATERAL-free inlining?

(2) Combine UDF inlining & compilation?

41

Future of UDFs

(1) LATERAL-free inlining?

(2) Combine UDF inlining & compilation?

(3) Inline Python UDFs?

41

New Girlfriend?

42

samarch.xyz

sarch@cs.cmu.edu

43

Experimental Setup
First batching vs inlining comparison!

UDFs from ProcBench, 1GB SF
Intel Xeon 5218R CPU, 192GB DDR4 RAM,

500GB NVMe SSD
SQL Server, DuckDB, PostgreSQL, Oracle

We report relative speedup

36

